3.521 \(\int \tan (c+d x) (a+b \tan (c+d x))^{5/2} \, dx\)

Optimal. Leaf size=158 \[ \frac{2 \left (a^2-b^2\right ) \sqrt{a+b \tan (c+d x)}}{d}+\frac{2 (a+b \tan (c+d x))^{5/2}}{5 d}+\frac{2 a (a+b \tan (c+d x))^{3/2}}{3 d}-\frac{(a-i b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}-\frac{(a+i b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d} \]

[Out]

-(((a - I*b)^(5/2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/d) - ((a + I*b)^(5/2)*ArcTanh[Sqrt[a + b*T
an[c + d*x]]/Sqrt[a + I*b]])/d + (2*(a^2 - b^2)*Sqrt[a + b*Tan[c + d*x]])/d + (2*a*(a + b*Tan[c + d*x])^(3/2))
/(3*d) + (2*(a + b*Tan[c + d*x])^(5/2))/(5*d)

________________________________________________________________________________________

Rubi [A]  time = 0.286247, antiderivative size = 158, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {3528, 3539, 3537, 63, 208} \[ \frac{2 \left (a^2-b^2\right ) \sqrt{a+b \tan (c+d x)}}{d}+\frac{2 (a+b \tan (c+d x))^{5/2}}{5 d}+\frac{2 a (a+b \tan (c+d x))^{3/2}}{3 d}-\frac{(a-i b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}-\frac{(a+i b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]*(a + b*Tan[c + d*x])^(5/2),x]

[Out]

-(((a - I*b)^(5/2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/d) - ((a + I*b)^(5/2)*ArcTanh[Sqrt[a + b*T
an[c + d*x]]/Sqrt[a + I*b]])/d + (2*(a^2 - b^2)*Sqrt[a + b*Tan[c + d*x]])/d + (2*a*(a + b*Tan[c + d*x])^(3/2))
/(3*d) + (2*(a + b*Tan[c + d*x])^(5/2))/(5*d)

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \tan (c+d x) (a+b \tan (c+d x))^{5/2} \, dx &=\frac{2 (a+b \tan (c+d x))^{5/2}}{5 d}+\int (-b+a \tan (c+d x)) (a+b \tan (c+d x))^{3/2} \, dx\\ &=\frac{2 a (a+b \tan (c+d x))^{3/2}}{3 d}+\frac{2 (a+b \tan (c+d x))^{5/2}}{5 d}+\int \sqrt{a+b \tan (c+d x)} \left (-2 a b+\left (a^2-b^2\right ) \tan (c+d x)\right ) \, dx\\ &=\frac{2 \left (a^2-b^2\right ) \sqrt{a+b \tan (c+d x)}}{d}+\frac{2 a (a+b \tan (c+d x))^{3/2}}{3 d}+\frac{2 (a+b \tan (c+d x))^{5/2}}{5 d}+\int \frac{-b \left (3 a^2-b^2\right )+a \left (a^2-3 b^2\right ) \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx\\ &=\frac{2 \left (a^2-b^2\right ) \sqrt{a+b \tan (c+d x)}}{d}+\frac{2 a (a+b \tan (c+d x))^{3/2}}{3 d}+\frac{2 (a+b \tan (c+d x))^{5/2}}{5 d}-\frac{1}{2} (i a-b)^3 \int \frac{1-i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx+\frac{1}{2} (i a+b)^3 \int \frac{1+i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx\\ &=\frac{2 \left (a^2-b^2\right ) \sqrt{a+b \tan (c+d x)}}{d}+\frac{2 a (a+b \tan (c+d x))^{3/2}}{3 d}+\frac{2 (a+b \tan (c+d x))^{5/2}}{5 d}+\frac{(a-i b)^3 \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 d}+\frac{(a+i b)^3 \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 d}\\ &=\frac{2 \left (a^2-b^2\right ) \sqrt{a+b \tan (c+d x)}}{d}+\frac{2 a (a+b \tan (c+d x))^{3/2}}{3 d}+\frac{2 (a+b \tan (c+d x))^{5/2}}{5 d}+\frac{(i a-b)^3 \operatorname{Subst}\left (\int \frac{1}{-1+\frac{i a}{b}-\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}-\frac{(i a+b)^3 \operatorname{Subst}\left (\int \frac{1}{-1-\frac{i a}{b}+\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}\\ &=-\frac{(a-i b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}-\frac{(a+i b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d}+\frac{2 \left (a^2-b^2\right ) \sqrt{a+b \tan (c+d x)}}{d}+\frac{2 a (a+b \tan (c+d x))^{3/2}}{3 d}+\frac{2 (a+b \tan (c+d x))^{5/2}}{5 d}\\ \end{align*}

Mathematica [A]  time = 0.698613, size = 138, normalized size = 0.87 \[ \frac{2 \sqrt{a+b \tan (c+d x)} \left (23 a^2+11 a b \tan (c+d x)+3 b^2 \tan ^2(c+d x)-15 b^2\right )-15 (a-i b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )-15 (a+i b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{15 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]*(a + b*Tan[c + d*x])^(5/2),x]

[Out]

(-15*(a - I*b)^(5/2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]] - 15*(a + I*b)^(5/2)*ArcTanh[Sqrt[a + b*T
an[c + d*x]]/Sqrt[a + I*b]] + 2*Sqrt[a + b*Tan[c + d*x]]*(23*a^2 - 15*b^2 + 11*a*b*Tan[c + d*x] + 3*b^2*Tan[c
+ d*x]^2))/(15*d)

________________________________________________________________________________________

Maple [B]  time = 0.033, size = 1361, normalized size = 8.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)*(a+b*tan(d*x+c))^(5/2),x)

[Out]

2/5*(a+b*tan(d*x+c))^(5/2)/d+2/d*a^2*(a+b*tan(d*x+c))^(1/2)-2*b^2*(a+b*tan(d*x+c))^(1/2)/d+2/3*a*(a+b*tan(d*x+
c))^(3/2)/d+1/2/d*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(
a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)*a-1/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)
+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*(a^2+b^2)^(1/2)*a^2+1/d*b^2/(2*(a^2+b^2)^(1/2)-
2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*(a^2
+b^2)^(1/2)-1/2/d*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(
a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)*a+1/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^
(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*(a^2+b^2)^(1/2)*a^2+3/d/(2*(a^2+b^2)^(1/2)-2*a)
^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^3-3/d/
(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/
2)-2*a)^(1/2))*a^3+3/4/d*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2
))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2-1/4/d*b^2*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d
*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-3/4/d*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+
b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2+1/4/d*b^2*ln(b*tan(d*x+c)+a+(a+b*tan(
d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-1/d*b^2/(2*(a^2+b^2
)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/
2))*(a^2+b^2)^(1/2)-2/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)
^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*(a^2+b^2)*a-1/d*b^2/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*
x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a+2/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*
arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*(a^2+b^2)*a+1/d
*b^2/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2
)^(1/2)-2*a)^(1/2))*a

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(a+b*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 27.7638, size = 15397, normalized size = 97.45 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(a+b*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-1/60*(60*sqrt(2)*d^5*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10 - (a^5 - 10*a^3*b^2
+ 5*a*b^4)*d^2*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4))/(25*a^8*b^2 - 100*a^
6*b^4 + 110*a^4*b^6 - 20*a^2*b^8 + b^10))*((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4
)^(3/4)*sqrt((25*a^8*b^2 - 100*a^6*b^4 + 110*a^4*b^6 - 20*a^2*b^8 + b^10)/d^4)*arctan(((5*a^18 + 25*a^16*b^2 +
 36*a^14*b^4 - 28*a^12*b^6 - 154*a^10*b^8 - 210*a^8*b^10 - 140*a^6*b^12 - 44*a^4*b^14 - 3*a^2*b^16 + b^18)*d^4
*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4)*sqrt((25*a^8*b^2 - 100*a^6*b^4 + 11
0*a^4*b^6 - 20*a^2*b^8 + b^10)/d^4) + (5*a^23 + 35*a^21*b^2 + 91*a^19*b^4 + 69*a^17*b^6 - 174*a^15*b^8 - 546*a
^13*b^10 - 714*a^11*b^12 - 534*a^9*b^14 - 231*a^7*b^16 - 49*a^5*b^18 - a^3*b^20 + a*b^22)*d^2*sqrt((25*a^8*b^2
 - 100*a^6*b^4 + 110*a^4*b^6 - 20*a^2*b^8 + b^10)/d^4) + sqrt(2)*((5*a^10 - 5*a^8*b^2 - 14*a^6*b^4 + 6*a^4*b^6
 + 9*a^2*b^8 - b^10)*d^7*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4)*sqrt((25*a^
8*b^2 - 100*a^6*b^4 + 110*a^4*b^6 - 20*a^2*b^8 + b^10)/d^4) + (5*a^15 - 5*a^13*b^2 - 39*a^11*b^4 - 9*a^9*b^6 +
 79*a^7*b^8 + 81*a^5*b^10 + 19*a^3*b^12 - 3*a*b^14)*d^5*sqrt((25*a^8*b^2 - 100*a^6*b^4 + 110*a^4*b^6 - 20*a^2*
b^8 + b^10)/d^4))*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10 - (a^5 - 10*a^3*b^2 + 5*
a*b^4)*d^2*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4))/(25*a^8*b^2 - 100*a^6*b^
4 + 110*a^4*b^6 - 20*a^2*b^8 + b^10))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*((a^10 + 5*a^8*b^2
+ 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4)^(3/4) - sqrt(2)*((a^2 - b^2)*d^7*sqrt((a^10 + 5*a^8*b^2 + 1
0*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4)*sqrt((25*a^8*b^2 - 100*a^6*b^4 + 110*a^4*b^6 - 20*a^2*b^8 + b^
10)/d^4) + (a^7 - a^5*b^2 - 5*a^3*b^4 - 3*a*b^6)*d^5*sqrt((25*a^8*b^2 - 100*a^6*b^4 + 110*a^4*b^6 - 20*a^2*b^8
 + b^10)/d^4))*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10 - (a^5 - 10*a^3*b^2 + 5*a*b
^4)*d^2*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4))/(25*a^8*b^2 - 100*a^6*b^4 +
 110*a^4*b^6 - 20*a^2*b^8 + b^10))*sqrt(((25*a^14 - 25*a^12*b^2 - 115*a^10*b^4 + 35*a^8*b^6 + 171*a^6*b^8 + 53
*a^4*b^10 - 17*a^2*b^12 + b^14)*d^2*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4)*
cos(d*x + c) + sqrt(2)*((25*a^11 - 175*a^9*b^2 + 410*a^7*b^4 - 350*a^5*b^6 + 61*a^3*b^8 - 3*a*b^10)*d^3*sqrt((
a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4)*cos(d*x + c) + (25*a^16 - 50*a^14*b^2 - 90
*a^12*b^4 + 150*a^10*b^6 + 136*a^8*b^8 - 118*a^6*b^10 - 70*a^4*b^12 + 18*a^2*b^14 - b^16)*d*cos(d*x + c))*sqrt
((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10 - (a^5 - 10*a^3*b^2 + 5*a*b^4)*d^2*sqrt((a^10
+ 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4))/(25*a^8*b^2 - 100*a^6*b^4 + 110*a^4*b^6 - 20*a
^2*b^8 + b^10))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*
b^6 + 5*a^2*b^8 + b^10)/d^4)^(1/4) + (25*a^19 + 25*a^17*b^2 - 140*a^15*b^4 - 220*a^13*b^6 + 126*a^11*b^8 + 430
*a^9*b^10 + 260*a^7*b^12 + 20*a^5*b^14 - 15*a^3*b^16 + a*b^18)*cos(d*x + c) + (25*a^18*b + 25*a^16*b^3 - 140*a
^14*b^5 - 220*a^12*b^7 + 126*a^10*b^9 + 430*a^8*b^11 + 260*a^6*b^13 + 20*a^4*b^15 - 15*a^2*b^17 + b^19)*sin(d*
x + c))/((a^2 + b^2)*cos(d*x + c)))*((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4)^(3/4
))/(25*a^26*b^2 + 125*a^24*b^4 + 110*a^22*b^6 - 530*a^20*b^8 - 1469*a^18*b^10 - 921*a^16*b^12 + 1716*a^14*b^14
 + 3924*a^12*b^16 + 3471*a^10*b^18 + 1531*a^8*b^20 + 254*a^6*b^22 - 34*a^4*b^24 - 11*a^2*b^26 + b^28))*cos(d*x
 + c)^2 + 60*sqrt(2)*d^5*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10 - (a^5 - 10*a^3*b
^2 + 5*a*b^4)*d^2*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4))/(25*a^8*b^2 - 100
*a^6*b^4 + 110*a^4*b^6 - 20*a^2*b^8 + b^10))*((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/
d^4)^(3/4)*sqrt((25*a^8*b^2 - 100*a^6*b^4 + 110*a^4*b^6 - 20*a^2*b^8 + b^10)/d^4)*arctan(-((5*a^18 + 25*a^16*b
^2 + 36*a^14*b^4 - 28*a^12*b^6 - 154*a^10*b^8 - 210*a^8*b^10 - 140*a^6*b^12 - 44*a^4*b^14 - 3*a^2*b^16 + b^18)
*d^4*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4)*sqrt((25*a^8*b^2 - 100*a^6*b^4
+ 110*a^4*b^6 - 20*a^2*b^8 + b^10)/d^4) + (5*a^23 + 35*a^21*b^2 + 91*a^19*b^4 + 69*a^17*b^6 - 174*a^15*b^8 - 5
46*a^13*b^10 - 714*a^11*b^12 - 534*a^9*b^14 - 231*a^7*b^16 - 49*a^5*b^18 - a^3*b^20 + a*b^22)*d^2*sqrt((25*a^8
*b^2 - 100*a^6*b^4 + 110*a^4*b^6 - 20*a^2*b^8 + b^10)/d^4) - sqrt(2)*((5*a^10 - 5*a^8*b^2 - 14*a^6*b^4 + 6*a^4
*b^6 + 9*a^2*b^8 - b^10)*d^7*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4)*sqrt((2
5*a^8*b^2 - 100*a^6*b^4 + 110*a^4*b^6 - 20*a^2*b^8 + b^10)/d^4) + (5*a^15 - 5*a^13*b^2 - 39*a^11*b^4 - 9*a^9*b
^6 + 79*a^7*b^8 + 81*a^5*b^10 + 19*a^3*b^12 - 3*a*b^14)*d^5*sqrt((25*a^8*b^2 - 100*a^6*b^4 + 110*a^4*b^6 - 20*
a^2*b^8 + b^10)/d^4))*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10 - (a^5 - 10*a^3*b^2
+ 5*a*b^4)*d^2*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4))/(25*a^8*b^2 - 100*a^
6*b^4 + 110*a^4*b^6 - 20*a^2*b^8 + b^10))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*((a^10 + 5*a^8*
b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4)^(3/4) + sqrt(2)*((a^2 - b^2)*d^7*sqrt((a^10 + 5*a^8*b^2
 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4)*sqrt((25*a^8*b^2 - 100*a^6*b^4 + 110*a^4*b^6 - 20*a^2*b^8
+ b^10)/d^4) + (a^7 - a^5*b^2 - 5*a^3*b^4 - 3*a*b^6)*d^5*sqrt((25*a^8*b^2 - 100*a^6*b^4 + 110*a^4*b^6 - 20*a^2
*b^8 + b^10)/d^4))*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10 - (a^5 - 10*a^3*b^2 + 5
*a*b^4)*d^2*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4))/(25*a^8*b^2 - 100*a^6*b
^4 + 110*a^4*b^6 - 20*a^2*b^8 + b^10))*sqrt(((25*a^14 - 25*a^12*b^2 - 115*a^10*b^4 + 35*a^8*b^6 + 171*a^6*b^8
+ 53*a^4*b^10 - 17*a^2*b^12 + b^14)*d^2*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d
^4)*cos(d*x + c) - sqrt(2)*((25*a^11 - 175*a^9*b^2 + 410*a^7*b^4 - 350*a^5*b^6 + 61*a^3*b^8 - 3*a*b^10)*d^3*sq
rt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4)*cos(d*x + c) + (25*a^16 - 50*a^14*b^2
- 90*a^12*b^4 + 150*a^10*b^6 + 136*a^8*b^8 - 118*a^6*b^10 - 70*a^4*b^12 + 18*a^2*b^14 - b^16)*d*cos(d*x + c))*
sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10 - (a^5 - 10*a^3*b^2 + 5*a*b^4)*d^2*sqrt((a
^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4))/(25*a^8*b^2 - 100*a^6*b^4 + 110*a^4*b^6 -
20*a^2*b^8 + b^10))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*
a^4*b^6 + 5*a^2*b^8 + b^10)/d^4)^(1/4) + (25*a^19 + 25*a^17*b^2 - 140*a^15*b^4 - 220*a^13*b^6 + 126*a^11*b^8 +
 430*a^9*b^10 + 260*a^7*b^12 + 20*a^5*b^14 - 15*a^3*b^16 + a*b^18)*cos(d*x + c) + (25*a^18*b + 25*a^16*b^3 - 1
40*a^14*b^5 - 220*a^12*b^7 + 126*a^10*b^9 + 430*a^8*b^11 + 260*a^6*b^13 + 20*a^4*b^15 - 15*a^2*b^17 + b^19)*si
n(d*x + c))/((a^2 + b^2)*cos(d*x + c)))*((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4)^
(3/4))/(25*a^26*b^2 + 125*a^24*b^4 + 110*a^22*b^6 - 530*a^20*b^8 - 1469*a^18*b^10 - 921*a^16*b^12 + 1716*a^14*
b^14 + 3924*a^12*b^16 + 3471*a^10*b^18 + 1531*a^8*b^20 + 254*a^6*b^22 - 34*a^4*b^24 - 11*a^2*b^26 + b^28))*cos
(d*x + c)^2 + 15*sqrt(2)*((a^5 - 10*a^3*b^2 + 5*a*b^4)*d^3*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 +
5*a^2*b^8 + b^10)/d^4)*cos(d*x + c)^2 + (a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)*d*cos(
d*x + c)^2)*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10 - (a^5 - 10*a^3*b^2 + 5*a*b^4)
*d^2*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4))/(25*a^8*b^2 - 100*a^6*b^4 + 11
0*a^4*b^6 - 20*a^2*b^8 + b^10))*((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4)^(1/4)*lo
g(((25*a^14 - 25*a^12*b^2 - 115*a^10*b^4 + 35*a^8*b^6 + 171*a^6*b^8 + 53*a^4*b^10 - 17*a^2*b^12 + b^14)*d^2*sq
rt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4)*cos(d*x + c) + sqrt(2)*((25*a^11 - 175
*a^9*b^2 + 410*a^7*b^4 - 350*a^5*b^6 + 61*a^3*b^8 - 3*a*b^10)*d^3*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4
*b^6 + 5*a^2*b^8 + b^10)/d^4)*cos(d*x + c) + (25*a^16 - 50*a^14*b^2 - 90*a^12*b^4 + 150*a^10*b^6 + 136*a^8*b^8
 - 118*a^6*b^10 - 70*a^4*b^12 + 18*a^2*b^14 - b^16)*d*cos(d*x + c))*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a
^4*b^6 + 5*a^2*b^8 + b^10 - (a^5 - 10*a^3*b^2 + 5*a*b^4)*d^2*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6
+ 5*a^2*b^8 + b^10)/d^4))/(25*a^8*b^2 - 100*a^6*b^4 + 110*a^4*b^6 - 20*a^2*b^8 + b^10))*sqrt((a*cos(d*x + c) +
 b*sin(d*x + c))/cos(d*x + c))*((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4)^(1/4) + (
25*a^19 + 25*a^17*b^2 - 140*a^15*b^4 - 220*a^13*b^6 + 126*a^11*b^8 + 430*a^9*b^10 + 260*a^7*b^12 + 20*a^5*b^14
 - 15*a^3*b^16 + a*b^18)*cos(d*x + c) + (25*a^18*b + 25*a^16*b^3 - 140*a^14*b^5 - 220*a^12*b^7 + 126*a^10*b^9
+ 430*a^8*b^11 + 260*a^6*b^13 + 20*a^4*b^15 - 15*a^2*b^17 + b^19)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c))) -
15*sqrt(2)*((a^5 - 10*a^3*b^2 + 5*a*b^4)*d^3*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^
10)/d^4)*cos(d*x + c)^2 + (a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)*d*cos(d*x + c)^2)*sq
rt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10 - (a^5 - 10*a^3*b^2 + 5*a*b^4)*d^2*sqrt((a^1
0 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4))/(25*a^8*b^2 - 100*a^6*b^4 + 110*a^4*b^6 - 20
*a^2*b^8 + b^10))*((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4)^(1/4)*log(((25*a^14 -
25*a^12*b^2 - 115*a^10*b^4 + 35*a^8*b^6 + 171*a^6*b^8 + 53*a^4*b^10 - 17*a^2*b^12 + b^14)*d^2*sqrt((a^10 + 5*a
^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4)*cos(d*x + c) - sqrt(2)*((25*a^11 - 175*a^9*b^2 + 410
*a^7*b^4 - 350*a^5*b^6 + 61*a^3*b^8 - 3*a*b^10)*d^3*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b
^8 + b^10)/d^4)*cos(d*x + c) + (25*a^16 - 50*a^14*b^2 - 90*a^12*b^4 + 150*a^10*b^6 + 136*a^8*b^8 - 118*a^6*b^1
0 - 70*a^4*b^12 + 18*a^2*b^14 - b^16)*d*cos(d*x + c))*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2
*b^8 + b^10 - (a^5 - 10*a^3*b^2 + 5*a*b^4)*d^2*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 +
b^10)/d^4))/(25*a^8*b^2 - 100*a^6*b^4 + 110*a^4*b^6 - 20*a^2*b^8 + b^10))*sqrt((a*cos(d*x + c) + b*sin(d*x + c
))/cos(d*x + c))*((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)/d^4)^(1/4) + (25*a^19 + 25*a
^17*b^2 - 140*a^15*b^4 - 220*a^13*b^6 + 126*a^11*b^8 + 430*a^9*b^10 + 260*a^7*b^12 + 20*a^5*b^14 - 15*a^3*b^16
 + a*b^18)*cos(d*x + c) + (25*a^18*b + 25*a^16*b^3 - 140*a^14*b^5 - 220*a^12*b^7 + 126*a^10*b^9 + 430*a^8*b^11
 + 260*a^6*b^13 + 20*a^4*b^15 - 15*a^2*b^17 + b^19)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c))) - 8*(3*a^10*b^2
+ 15*a^8*b^4 + 30*a^6*b^6 + 30*a^4*b^8 + 15*a^2*b^10 + 3*b^12 + (23*a^12 + 97*a^10*b^2 + 140*a^8*b^4 + 50*a^6*
b^6 - 65*a^4*b^8 - 67*a^2*b^10 - 18*b^12)*cos(d*x + c)^2 + 11*(a^11*b + 5*a^9*b^3 + 10*a^7*b^5 + 10*a^5*b^7 +
5*a^3*b^9 + a*b^11)*cos(d*x + c)*sin(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c)))/((a^10 +
5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)*d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b \tan{\left (c + d x \right )}\right )^{\frac{5}{2}} \tan{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(a+b*tan(d*x+c))**(5/2),x)

[Out]

Integral((a + b*tan(c + d*x))**(5/2)*tan(c + d*x), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(a+b*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

Timed out